Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Nutrients ; 15(11)2023 Jun 05.
Article in English | MEDLINE | ID: covidwho-20232888

ABSTRACT

Natural herbs and functional foods contain bioactive molecules capable of augmenting the immune system and mediating anti-viral functions. Functional foods, such as prebiotics, probiotics, and dietary fibers, have been shown to have positive effects on gut microbiota diversity and immune function. The use of functional foods has been linked to enhanced immunity, regeneration, improved cognitive function, maintenance of gut microbiota, and significant improvement in overall health. The gut microbiota plays a critical role in maintaining overall health and immune function, and disruptions to its balance have been linked to various health problems. SARS-CoV-2 infection has been shown to affect gut microbiota diversity, and the emergence of variants poses new challenges to combat the virus. SARS-CoV-2 recognizes and infects human cells through ACE2 receptors prevalent in lung and gut epithelial cells. Humans are prone to SARS-CoV-2 infection because their respiratory and gastrointestinal tracts are rich in microbial diversity and contain high levels of ACE2 and TMPRSS2. This review article explores the potential use of functional foods in mitigating the impact of SARS-CoV-2 variants on gut microbiota diversity, and the potential use of functional foods as a strategy to combat these effects.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Functional Food
2.
Cell Mol Biol (Noisy-le-grand) ; 69(1): 137-144, 2023 Jan 31.
Article in English | MEDLINE | ID: covidwho-2321424

ABSTRACT

Spirulina, a blue-green microalga is an eminent functional food due to its unique nutritional and disease-mitigating properties. The main objective of this article is to present an overview of the nutritional composition of Spirulina. Along with its therapeutic potential and applications in the food industry. Studies included in this review have suggested spirulina to be a rich source of complete proteins, essential fatty acids (EFAs), vitamins, minerals and various bioactive compounds like carotenoids, chlorophyll, and xanthophylls. This makes Spirulina a promising functional food for the treatment of ailments like diabetes, cancer, cardiovascular disorders (CVDs), COVID-19, neuroinflammatory conditions and gut dysbiosis. Additionally, data from numerous studies suggest its use in food formulations, primarily in sports supplements, bakery products, beverages, dairy products, snack sources and confectionaries. It has also been used by the National Aeronautics and Space Association (NASA) for astronauts on space missions to the Moon and Mars. Furthermore, spirulina's use as a natural food additive possesses enormous potential for further research. Owing to its high nutritional profile and disease-fighting potential, it lends itself to numerous food formulations. Therefore, based on the findings of previous studies, further progress can be made considering spirulina's application in the food additive industry.


Subject(s)
COVID-19 , Spirulina , Humans , Functional Food , Spirulina/metabolism , Dietary Supplements , Food Additives/metabolism
3.
Molecules ; 27(15)2022 Jul 27.
Article in English | MEDLINE | ID: covidwho-1994114

ABSTRACT

Medicinal and food homologous adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) plays an important role in natural products promoting human health. We demonstrated the systematic actional mechanism of functional ingredients in adlay to promote human health, based on the PubMed, CNKI, Google, and ISI Web of Science databases from 1988 to 2022. Adlay and its extracts are rich in 30 ingredients with more than 20 health effects based on human and animal or cell cultures: they are anti-cancer, anti-inflammation, anti-obesity, liver protective, anti-virus, gastroprotective, cardiovascular protective, anti-hypertension, heart disease preventive, melanogenesis inhibiting, anti-allergy, endocrine regulating, anti-diabetes, anti-cachexia, osteoporosis preventive, analgesic, neuroprotecting, suitable for the treatment of gout arthritis, life extending, anti-fungi, and detoxifying effects. Function components with anti-oxidants are rich in adlay. These results support the notion that adlay seeds may be one of the best functional foods and further reveal the action mechanism of six major functional ingredients (oils, polysaccharides, phenols, phytosterols, coixol, and resistant starch) for combating diseases. This review paper not only reveals the action mechanisms of adding adlay to the diet to overcome 17 human diseases, but also provides a scientific basis for the development of functional foods and drugs for the treatment of human diseases.


Subject(s)
Anti-Allergic Agents , Coix , Animals , Functional Food , Humans , Phenols , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
4.
Molecules ; 27(15)2022 Jul 29.
Article in English | MEDLINE | ID: covidwho-1969392

ABSTRACT

The aim of this study was to investigate the effect of blackberry and raspberry fruits (1 and 4%) and leaves (0.5 and 1%) on the biological activities of rape honey. Honey and plant material extracts were analyzed regarding total phenolic, flavonoid, anthocyanin contents, HPTLC and HPLC polyphenol profiles, as well as antioxidant activity. The antiviral potential was analyzed against bacteriophage phi 6-a coronavirus surrogate-whereas antimicrobial was tested against S. aureus and E. coli. Blackberry extracts were more abundant in antioxidants than raspberry extracts, with better properties found for leaves than fruits and for cultivated rather than commercial plants. The addition of both Rubus plant additives significantly increased the antioxidant potential of honey by four-fold (for 4% fruits additive) to five-fold (for 1% of leaves). Honey with the addition of fruits possessed higher antiviral potential compared with raw rape honey (the highest for 4% of raspberry fruit and 1% of blackberry leaf additive). Honey enriched with Rubus materials showed higher antibacterial potential against S. aureus than rape honey and effectively inhibited S. aureus biofilm formation. To summarize, honey enriched with Rubus fruit or leaves are characterized by increased pro-health value and can be recommended as a novel functional food.


Subject(s)
Honey , Rubus , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Antiviral Agents/pharmacology , Escherichia coli , Fruit , Functional Food , Plant Extracts/pharmacology , Staphylococcus aureus
5.
Mar Drugs ; 20(5)2022 Apr 28.
Article in English | MEDLINE | ID: covidwho-1875691

ABSTRACT

Nowadays, the logarithmic production of existing well-known food materials is unable to keep up with the demand caused by the exponential growth of the human population in terms of the equality of access to food materials. Famous local food materials with treasury properties such as mangrove fruits are an excellent source to be listed as emerging food candidates with ethnomedicinal properties. Thus, this study reviews the nutrition content of several edible mangrove fruits and the innovation to improve the fruit into a highly economic food product. Within the mangrove fruit, the levels of primary metabolites such as carbohydrates, protein, and fat are acceptable for daily intake. The mangrove fruits, seeds, and endophytic fungi are rich in phenolic compounds, limonoids, and their derivatives as the compounds present a multitude of bioactivities such as antimicrobial, anticancer, and antioxidant. In the intermediary process, the flour of mangrove fruit stands as a supplementation for the existing flour with antidiabetic or antioxidant properties. The mangrove fruit is successfully transformed into many processed food products. However, limited fruits from species such as Bruguiera gymnorrhiza, Rhizophora mucronata, Sonneratia caseolaris, and Avicennia marina are commonly upgraded into traditional food, though many more species demonstrate ethnomedicinal properties. In the Middle East, A. marina is the dominant species, and the study of the phytochemicals and fruit development is limited. Therefore, studies on the development of mangrove fruits to functional for other mangrove species are demanding. The locally accepted mangrove fruit is coveted as an alternate food material to support the sustainable development goal of eliminating world hunger in sustainable ways.


Subject(s)
Fruit , Rhizophoraceae , Antioxidants/metabolism , Functional Food , Humans , Phytochemicals/analysis , Rhizophoraceae/metabolism
6.
Molecules ; 27(7)2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1776290

ABSTRACT

Many mushroom species are consumed as food, while significant numbers are also utilised medicinally. Mushrooms are rich in nutrients and bioactive compounds. A growing body of in vitro, in vivo, and human research has revealed their therapeutic potentials, which include such properties as anti-pathogenic, antioxidant, anti-inflammatory, immunomodulatory, gut microbiota enhancement, and angiotensin-converting enzyme 2 specificity. The uses of medicinal mushrooms (MMs) as extracts in nutraceuticals and other functional food and health products are burgeoning. COVID-19 presents an opportunity to consider how, and if, specific MM compounds might be utilised therapeutically to mitigate associated risk factors, reduce disease severity, and support recovery. As vaccines become a mainstay, MMs may have the potential as an adjunct therapy to enhance immunity. In the context of COVID-19, this review explores current research about MMs to identify the key properties claimed to confer health benefits. Considered also are barriers or limitations that may impact general recommendations on MMs as therapy. It is contended that the extraction method used to isolate bioactive compounds must be a primary consideration for efficacious targeting of physiological endpoints. Mushrooms commonly available for culinary use and obtainable as a dietary supplement for medicinal purposes are included in this review. Specific properties related to these mushrooms have been considered due to their potential protective and mediating effects on human exposure to the SARS CoV-2 virus and the ensuing COVID-19 disease processes.


Subject(s)
Agaricales , COVID-19 Drug Treatment , Dietary Supplements , Functional Food , Humans , Immunomodulation
7.
J Food Biochem ; 46(3): e13902, 2022 03.
Article in English | MEDLINE | ID: covidwho-1759205

ABSTRACT

The immune function of the human body is highly influenced by the dietary intake of certain nutrients and bioactive compounds present in foods. The preventive effects of these bioactive ingredients against various diseases have been well investigated. Functional foods are consumed across various diverse cultures, in some form or the other, which provide benefits greater than the basic nutritional needs. Novel functional foods are being developed using novel bioactive ingredients such as probiotics, polyunsaturated fatty acids, and various phytoconstituents, which have a range of immunomodulatory properties. Apart from immunomodulation, these ingredients also affect immunity by their antioxidant, antibacterial, and antiviral properties. The global pandemic of Severe Acute Respiratory Syndrome Coronavirus-2 has forced the scientific community to race against time to find a proper and effective drug or a vaccine. In this review, various non-pharmacological interventions using nutraceuticals and functional foods have been discussed. PRACTICAL APPLICATIONS: Despite a plethora of research being undertaken to understand the immunity boosting properties of the various bioactive present in food, the findings are not translating to nutraceutical products in the market. Immunity has proved to be one of the most important factors for the health and well-being of an individual, especially when the world has been under the grip of the novel coronavirus Severe Acute Respiratory Syndrome Coronavirus-2. The anti-inflammatory properties of various nutraceuticals can come out as potential inhibitors of the various inflammatory processes such as cytokine storms, usually being observed in COVID 19. This review gives an insight into how various nutraceuticals can help in the prevention of various diseases through different mechanisms. The lack of awareness and proper clinical trials pose a challenge to the nutraceutical industry. This review will help and encourage researchers to further design and develop various functional foods, which might help in building immunity.


Subject(s)
COVID-19 , Antioxidants , Dietary Supplements , Functional Food , Humans , Pandemics/prevention & control
8.
Molecules ; 27(5)2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1715569

ABSTRACT

COVID-19 is an endothelial disease. All the major comorbidities that increase the risk for severe SARS-CoV-2 infection and severe COVID-19 including old age, obesity, diabetes, hypertension, respiratory disease, compromised immune system, coronary artery disease or heart failure are associated with dysfunctional endothelium. Genetics and environmental factors (epigenetics) are major risk factors for endothelial dysfunction. Individuals with metabolic syndrome are at increased risk for severe SARS-CoV-2 infection and poor COVID-19 outcomes and higher risk of mortality. Old age is a non-modifiable risk factor. All other risk factors are modifiable. This review also identifies dietary risk factors for endothelial dysfunction. Potential dietary preventions that address endothelial dysfunction and its sequelae may have an important role in preventing SARS-CoV-2 infection severity and are key factors for future research to address. This review presents some dietary bioactives with demonstrated efficacy against dysfunctional endothelial cells. This review also covers dietary bioactives with efficacy against SARS-CoV-2 infection. Dietary bioactive compounds that prevent endothelial dysfunction and its sequelae, especially in the gastrointestinal tract, will result in more effective prevention of SARS-CoV-2 variant infection severity and are key factors for future food research to address.


Subject(s)
Endothelium/drug effects , Flavonoids/pharmacology , Functional Food/analysis , SARS-CoV-2/drug effects , COVID-19/pathology , COVID-19/virology , Endothelium/metabolism , Flavonoids/metabolism , Flavonoids/therapeutic use , Humans , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Risk Factors , SARS-CoV-2/isolation & purification , Stilbenes/pharmacology , Stilbenes/therapeutic use , Terpenes/pharmacology , Terpenes/therapeutic use , COVID-19 Drug Treatment
9.
Int J Mol Sci ; 23(3)2022 Feb 01.
Article in English | MEDLINE | ID: covidwho-1686812

ABSTRACT

Flavonols are a subclass of natural flavonoids characterized by a remarkable number of biotechnological applications and health-promoting properties. They attract researchers' attention due to many epidemiological studies supporting their usage. They are phytochemicals commonly present in our diet, being ubiquitous in the plant kingdom and, in particular, relatively very abundant in fruits and vegetables. All these aspects make flavonols candidates of choice for the valorization of products, based on the presence of a remarkable number of different chemical structures, each one characterized by specific chemical features capable of influencing biological targets inside the living organisms in very different manners. In this review, we analyzed the biochemical and physiological characteristics of flavonols focalizing our attention on the most promising compounds to shed some light on their increasing utilization in biotechnological applications in processing industries, as well as their suitable employment to improve the overall wellness of the humankind.


Subject(s)
Diet, Healthy , Flavonols/metabolism , Flavonols/pharmacology , Food Industry , Fruit/chemistry , Functional Food , Humans , Vegetables/chemistry
10.
Food Funct ; 13(3): 1617-1627, 2022 Feb 07.
Article in English | MEDLINE | ID: covidwho-1655678

ABSTRACT

High-amylose starch branching enzyme II (sbeII) mutant wheat has potential to be low-glycaemic compared to conventional wheat; however, the effects of bread made from sbeII wheat flour on glycaemic response and product quality require investigation. We report the impact of white bread made from sbeII wheat flour on in vitro starch digestibility and product quality, and on postprandial glycaemia in vivo, compared to an isoglucidic wild-type (WT) control white bread. Starch in sbeII bread was ∼20% less susceptible to in vitro amylolysis leading to ∼15% lower glycaemic response measured in vivo, compared to the WT control bread, without major effects on bread appearance or texture, measured instrumentally. Despite the early termination of the in vivo intervention study due to the COVID-19 outbreak (n = 8 out of 19), results from this study indicate that sbeII wheat produces bread with lower starch digestibility than conventional white bread.


Subject(s)
1,4-alpha-Glucan Branching Enzyme/metabolism , Amylose/metabolism , Bread , Digestion , Functional Food , Triticum , Adult , Blood Glucose , Cross-Over Studies , Double-Blind Method , Female , Glycemic Index , Humans , Male , Postprandial Period , Satiation
11.
Int J Environ Res Public Health ; 18(22)2021 11 09.
Article in English | MEDLINE | ID: covidwho-1512328

ABSTRACT

The COVID-19 pandemic has exerted a strong impact on numerous areas of everyday life. The aim of this study was to check how the pandemic influenced the composition of dietary supplements and other functional food products placed on the market till March 2021, compared to 2019. For this purpose, data concerning the registered products and reports of popularity of online searches of terms connected with vitamins and minerals were used. The results of the study made it possible to determine the group of ingredients especially popular during the pandemic. Their use in products after the announcement of the pandemic was significantly higher than in the preceding period. In conclusion, it can be shown that the pandemic changed the ingredients used in functional foods-mainly as far as vitamins and minerals are concerned. The highest proportional increase in its use in dietary supplements was noted for potassium. Personalized therapy has also become more popular, promoted by one of the manufacturers of dietary supplements active during the pandemic. Moreover, different phases of the pandemic were characterized by the popularity of different ingredients among the consumers-first, these were immunity-boosting ingredients, then those that improved psychological functions, and finally mixtures with universal health effects.


Subject(s)
COVID-19 , Functional Food , Dietary Supplements , Humans , Pandemics , Poland/epidemiology , SARS-CoV-2
12.
Mar Drugs ; 19(10)2021 Sep 22.
Article in English | MEDLINE | ID: covidwho-1480860

ABSTRACT

To discover the new medical entity from edible marine algae, our continuously natural product investigation focused on endophytes from marine macroalgae Grateloupia sp. Two new azaphilones, 8a-epi-hypocrellone A (1), 8a-epi-eupenicilazaphilone C (2), together with five known azaphilones, hypocrellone A (3), eupenicilazaphilone C (4), ((1E,3E)-3,5-dimethylhepta-1,3-dien-1-yl)-2,4-dihydroxy-3-methylbenzaldehyde (5), sclerotiorin (6), and isochromophilone IV (7) were isolated from the alga-derived fungus Penicillium sclerotiorum. The structures of isolated azaphilones (1-7) were elucidated by spectrometric identification, especially HRESIMS, CD, and NMR data analyses. Concerning bioactivity, cytotoxic, anti-inflammatory, and anti-fibrosis activities of those isolates were evaluated. As a result, compound 1 showed selective toxicity toward neuroblastoma cell line SH-SY5Y among seven cancer and one fibroblast cell lines. 20 µM of compounds 1, 3, and 7 inhibited the TNF-α-induced NFκB phosphorylation but did not change the NFκB activity. Compounds 2 and 6 respectively promoted and inhibited SMAD-mediated transcriptional activities stimulated by TGF-ß.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Benzopyrans/pharmacology , Microalgae , Penicillium , Pigments, Biological/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Aquatic Organisms , Benzopyrans/chemistry , Benzopyrans/therapeutic use , Cell Line, Tumor/drug effects , Fibroblasts/drug effects , Functional Food , Neuroblastoma/drug therapy , Pigments, Biological/chemistry , Pigments, Biological/therapeutic use , Structure-Activity Relationship
13.
J Food Biochem ; 45(12): e13961, 2021 12.
Article in English | MEDLINE | ID: covidwho-1480168

ABSTRACT

COVID-19 has become the focal point since 2019 after the outbreak of coronavirus disease. Many drugs are being tested and used to treat coronavirus infections; different kinds of vaccines are also introduced as preventive measure. Alternative therapeutics are as well incorporated into the health guidelines of some countries. This research aimed to look into the underlying mechanisms of functional foods and how they may improve the long-term post COVID-19 cardiovascular, diabetic, and respiratory complications through their bioactive compounds. The potentiality of nine functional foods for post COVID-19 complications was investigated through computational approaches. A total of 266 bioactive compounds of these foods were searched via extensive literature reviewing. Three highly associated targets namely troponin I interacting kinase (TNNI3K), dipeptidyl peptidase 4 (DPP-4), and transforming growth factor beta 1 (TGF-ß1) were selected for cardiovascular, diabetes, and respiratory disorders, respectively, after COVID-19 infections. Best docked compounds were further analyzed by network pharmacological tools to explore their interactions with complication-related genes (MAPK1 and HSP90AA1 for cardiovascular, PPARG and TNF-alpha for diabetes, and AKT-1 for respiratory disorders). Seventy-one suggested compounds out of one-hundred and thirty-nine (139) docked compounds in network pharmacology recommended 169 Gene Ontology (GO) items and 99 Kyoto Encyclopedia of Genes and Genomes signaling pathways preferably AKT signaling pathway, MAPK signaling pathway, ACE2 receptor signaling pathway, insulin signaling pathway, and PPAR signaling pathway. Among the chosen functional foods, black cumin, fenugreek, garlic, ginger, turmeric, bitter melon, and Indian pennywort were found to modulate the actions. Results demonstrate that aforesaid functional foods have attenuating roles to manage post COVID-19 complications. PRACTICAL APPLICATIONS: Functional foods have been approaching a greater interest due to their medicinal uses other than gastronomic pleasure. Nine functional food resources have been used in this research for their traditional and ethnopharmacological uses, but their directive-role in modulating the genes involved in the management of post COVID-19 complications is inadequately studied and reported. Therefore, the foods types used in this research may be prioritized to be used as functional foods for ameliorating the major post COVID-19 complications through appropriate science.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Functional Food , Humans , Medicine, Chinese Traditional , Molecular Docking Simulation , Network Pharmacology , Protein Serine-Threonine Kinases , SARS-CoV-2
14.
Mar Drugs ; 19(9)2021 Sep 07.
Article in English | MEDLINE | ID: covidwho-1448903

ABSTRACT

Cardiovascular disease (CVD), which involves the onset and exacerbation of various conditions including dyslipidemia, activation of the renin-angiotensin system, vascular endothelial cell damage, and oxidative stress, is a leading cause of high mortality rates and accounts for one-third of deaths worldwide. Accordingly, as dietary changes in daily life are thought to greatly reduce the prevalence of CVD, numerous studies have been conducted to examine the potential use of foods and their bioactive components for preventing and treating CVD. In particular, seaweeds contain unique bioactive metabolites that are not found in terrestrial plants because of the harsh environment in which they survive, leading to in vitro and in vivo studies of their prevention and treatment effects. This review summarizes studies that focused on the beneficial effects of seaweeds and their natural products targeting markers involved in a cascade of mechanisms related to CVD pathogenesis. The purpose of this review is to describe the potential of seaweeds and their natural products for preventing and treating CVD based on in vivo and in vitro studies. This review provides a basis for future research in the field of marine drugs.


Subject(s)
Coronary Artery Disease/prevention & control , Seaweed , Animals , Aquatic Organisms , Biological Products , Functional Food , Humans , Hypolipidemic Agents/therapeutic use
15.
Molecules ; 26(17)2021 Aug 25.
Article in English | MEDLINE | ID: covidwho-1399347

ABSTRACT

Lippia graveolens is a traditional crop and a rich source of bioactive compounds with various properties (e.g., antioxidant, anti-inflammatory, antifungal, UV defense, anti-glycemic, and cytotoxicity) that is primarily cultivated for essential oil recovery. The isolated bioactive compounds could be useful as additives in the functional food, nutraceuticals, cosmetics, and pharmaceutical industries. Carvacrol, thymol, ß-caryophyllene, and p-cymene are terpene compounds contained in oregano essential oil (OEO); flavonoids such as quercetin O-hexoside, pinocembrin, and galangin are flavonoids found in oregano extracts. Furthermore, thermoresistant compounds that remain in the plant matrix following a thermal process can be priced in terms of the circular economy. By using better and more selective extraction conditions, the bioactive compounds present in Mexican oregano can be studied as potential inhibitors of COVID-19. Also, research on extraction technologies should continue to ensure a higher quality of bioactive compounds while preventing an undesired chemical shift (e.g., hydrolysis). The oregano fractions can be used in the food, health, and agricultural industries.


Subject(s)
Lippia/chemistry , Phytochemicals/therapeutic use , Plant Extracts/therapeutic use , Cosmetics , Dietary Supplements , Functional Food , Humans , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
16.
Nutrients ; 13(3)2021 Mar 06.
Article in English | MEDLINE | ID: covidwho-1383899

ABSTRACT

In 2020, with the advent of a pandemic touching all aspects of global life, there is a renewed interest in nutrition solutions to support the immune system. Infants are vulnerable to infection and breastfeeding has been demonstrated to provide protection. As such, human milk is a great model for sources of functional nutrition ingredients, which may play direct roles in protection against viral diseases. This review aims to summarize the literature around human milk (lactoferrin, milk fat globule membrane, osteopontin, glycerol monolaurate and human milk oligosaccharides) and infant nutrition (polyunsaturated fatty acids, probiotics and postbiotics) inspired ingredients for support against viral infections and the immune system more broadly. We believe that the application of these ingredients can span across all life stages and thus apply to both pediatric and adult nutrition. We highlight the opportunities for further research in this field to help provide tangible nutrition solutions to support one's immune system and fight against infections.


Subject(s)
COVID-19/immunology , Food Ingredients/analysis , Immune System/virology , Milk, Human/chemistry , SARS-CoV-2/immunology , Adult , COVID-19/therapy , Female , Functional Food/analysis , Humans , Infant , Infant Nutritional Physiological Phenomena/immunology , Male , Nutrition Therapy/methods
17.
BMC Complement Med Ther ; 21(1): 219, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1383623

ABSTRACT

BACKGROUND: Pears have been world-widely used as a sweet and nutritious food and a folk medicine for more than two millennia. METHODS: We conducted a review from ancient literatures to current reports to extract evidence-based functions of pears. RESULTS: We found that pears have many active compounds, e.g., flavonoids, triterpenoids, and phenolic acids including arbutin, chlorogenic acid, malaxinic acid, etc. Most of researchers agree that the beneficial compounds are concentrated in the peels. From various in vitro, in vivo, and human studies, the medicinal functions of pears can be summarized as anti-diabetic,-obese, -hyperlipidemic, -inflammatory, -mutagenic, and -carcinogenic effects, detoxification of xenobiotics, respiratory and cardio-protective effects, and skin whitening effects. Therefore, pears seem to be even effective for prevention from Covid-19 or PM2.5 among high susceptible people with multiple underlying diseases. CONCLUSION: For the current or post Covid-19 era, pears have potential for functional food or medicine for both of communicable and non-communicable disease.


Subject(s)
Fruit/chemistry , Functional Food , Phytochemicals/pharmacology , Pyrus/chemistry , COVID-19 , Flavonoids , Humans , Phenols , Triterpenes
18.
Food Funct ; 12(17): 7637-7650, 2021 Sep 07.
Article in English | MEDLINE | ID: covidwho-1319051

ABSTRACT

COVID-19 implications are still a threat to global health. In the face of this pandemic, food and nutrition are key issues that can boost the immune system. The bioactivity of functional foods and nutrients (probiotics, prebiotics, water- and fat-soluble vitamins, minerals, flavonoids, glutamine, arginine, nucleotides, and PUFAs) contributes to immune system modulation, which establishes the status of nutrients as a factor of immune competence. These foods can contribute, especially during a pandemic, to the minimization of complications of SARS-CoV-2 infection. Therefore, it is important to support the nutritional strategies for strengthening the immune status, associated with good eating habits, as a way to confront COVID-19.


Subject(s)
COVID-19/immunology , Functional Food , Immunomodulation , Nutrients/administration & dosage , Nutritional Status/immunology , Arginine , Fatty Acids, Omega-3 , Glutamine , Humans , Phenols , Prebiotics , Probiotics , SARS-CoV-2 , Trace Elements
19.
Crit Rev Food Sci Nutr ; 62(31): 8703-8727, 2022.
Article in English | MEDLINE | ID: covidwho-1254199

ABSTRACT

In 2020, the world's food crisis and health industry ushered into a real outbreak. On one side, there were natural disasters such as the novel coronavirus (2019-nCoV), desert locusts, floods, and droughts exacerbating the world food crisis, while on the other side, the social development and changes in lifestyles prompted the health industry to gradually shift from a traditional medical model to a new pattern of prevention, treatment, and nourishment. Therefore, this article reviews animal by-products collagen and derived peptide, as important components of innovative sustainable food systems. The review also considered the preparation, identification, and characterization of animal by-product collagen and collagen peptides as well as their impacts on the food system (including food processing, packaging, preservation, and functional foods). Finally, the application and research progress of animal by-product collagen and peptide in the food system along with the future development trend were discussed. This knowledge would be of great significance for a comprehensive understanding of animal by-product collagen and collagen peptides and would encourage the use of collagen in food processing, preservation, and functional foods.


Subject(s)
COVID-19 , Animals , COVID-19/prevention & control , Food Handling , Functional Food , Collagen , Peptides
20.
Pharmacol Res ; 168: 105581, 2021 06.
Article in English | MEDLINE | ID: covidwho-1157664

ABSTRACT

In-depth characterization of heart-brain communication in critically ill patients with severe acute respiratory failure is attracting significant interest in the COronaVIrus Disease 19 (COVID-19) pandemic era during intensive care unit (ICU) stay and after ICU or hospital discharge. Emerging research has provided new insights into pathogenic role of the deregulation of the heart-brain axis (HBA), a bidirectional flow of information, in leading to severe multiorgan disease syndrome (MODS) in patients with confirmed infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Noteworthy, HBA dysfunction may worsen the outcome of the COVID-19 patients. In this review, we discuss the critical role HBA plays in both promoting and limiting MODS in COVID-19. We also highlight the role of HBA as new target for novel therapeutic strategies in COVID-19 in order to open new translational frontiers of care. This is a translational perspective from the Italian Society of Cardiovascular Researches.


Subject(s)
Brain Diseases/therapy , Brain/drug effects , COVID-19/therapy , Heart Diseases/therapy , Heart/drug effects , Adrenal Cortex Hormones/administration & dosage , Anti-Inflammatory Agents/administration & dosage , Antiviral Agents/administration & dosage , Brain/immunology , Brain/metabolism , Brain Diseases/immunology , Brain Diseases/metabolism , COVID-19/immunology , COVID-19/metabolism , Critical Care/methods , Critical Illness/therapy , Dietary Supplements , Functional Food , Heart Diseases/immunology , Heart Diseases/metabolism , Humans , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Microvessels/drug effects , Microvessels/immunology , Microvessels/metabolism , Multiple Organ Failure/immunology , Multiple Organ Failure/metabolism , Multiple Organ Failure/therapy , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL